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DO SOLAR FLARE PROTON EVENTS MEASURE THE
GEOMETRY OF A DIFFUSION PROCESS?

ABSTRACT

The temporal evolution of the intensity for solar flare protons,
during the onset phase, is shown to be insensitive to the dimensionality

of an associated diffusion process.
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I - INTRODUCTION
The temporal distribution of protons arriving at Earth from solar flare
events is consistent with an isotropic three-dimensional diffusion process(l’z).

The mean free path ()\) associated with this diffusion process is approximately

(1 (3)

0.04 astronomical units . Parker's interpretation “of the magnetic measure-
ments of Ness et. a1.4 indicates that there are sharp kinks of the interplanetary
magnetic field at intervals comparable to ). Therefore,f; gross picture that
emerges is one in which the solar protons that are injected into the inter-
planetary medium, diffuse to Earth via scattering from '"frozen" magnetic

kinks(3) which are uniformly distributed over a homogeneous isotropic solar

o

environment. ' Yet, we already know that the solar corona is not always

(5)

spherical , and the rotating sun spins the magnetic field of the solar

(6,7)

wind into an Archimedes spiral We shall show explicitly that the

temporal development of the observed solar flare proton intensity is, in

fact, a poor indication of the geometry associated with the diffusion process

(1,2,3)

which has been invoked for describing the propagation of the beam;/
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11 - THE DIFFUSION PROCESS

The distribution function (p) for a particle that is diffusing among
a passive lattice of scattering centers obeys a Smoluchowski generalized

(8,9)

diffusion equation of the form

3 - [ - J
Pig. Uu+J =0 (L
a7 P

where U is the drift velocity of the lattice (e.g. the velocity of the solar

wind) and

-

-3—_"—‘_-]D'Vp (2)
whereD is a diffusion dyadic consisting of nine elements Djj, for (i) and
(j) indices that intermix the three spatial dimensions.

Ideally, we shall consider the problem in the reference system of the
lattice, or equivalently, we make the approximation that the wind speed is
negligible compared with the speed of the solar flare protons. In practice,
the velocity of the diffusing proton (= 108m/sec.) is about three orders of

magnitude greater than the wind velocity. Hénce, we take

U ~0. (3)
We consider two extreme cases: (i) three-dimensional isotropic diffusion
characterized by
Dij = (Da) éij (4)
when 51j is the Kronecker delta, and (ii)one - dimensional diffusion represented

by

o
]

1320 (L,DAQ,L)
. (5)

11 1




At zero time, the particles are injected at the origin of an unbounded
medium., For the physical situation of an absorbing boundary at |?| = R, the
description in terms of an unbounded medium remains approximately valid(lo)
provided that observations are restricted in space (¥) and time (t) to

lr| <R
1 (6)
t < 100" (R®/D)
Subject to the specified restrictions (3,6), the solutions to the diffusion

equation (1,2) are the associated Green's functions. For three-dimensional

isotropic diffusion (4) this is

Py = (4nDat)_3/2 exp L- rz/(ll»Dat)J, (7)
For one - dimensional diffusion (5), the solution is
= (4rD, t)1/ - r2/(4D, )
pl ( ﬂDlt) exp 1t . (8)

These solutions (7,8) are similar in form to the corresponding solutions

(11)

for the problem of the random walk of a particle of speed v executing steps

of length L. For the three-dimensional case, we have

-3/2 3 )
(4 ) ‘4
Pa= (5 mLyvt ) exp L- rz/ Kg Lavt>]. ~ (9)
For one-dimensional random walk, the solution is:
01 = (417L1vt)—1/2 exp [- rz/ (4L1Vt) J. (10)

Comparing (9) with (7) and (10) with (8), we make the identifications:
Dy =3 v, (11)

D, = VL, . (12)



For a given obsefvation point.(r), we observe from (9) and (10) that
the maximum intensity (i.e. peak p) occurs at a time (tg,) given by:
t, = £2/(2vL). (13)
By inserting (11) and (12) into (13), this time (tm) may be re-written in

a form that better distinguishes the two extreme cases. For isotropic

diffusion (11) we obtain

_1 /e
tn = ¢ (@ (R2/D,). (14)

For one-dimensional diffusion (12)

_ 1L /¢
tn =3 (@ (R?/D, ). (15)

Hence, for the situation where D, =~D,, the one-dimensional peak intensity
reaches the observer after a time interval that is three times longer than
the interval required for the arrival of the peak of the isotropic intensity.
Moreover, particle escape at the boundary could become important before the
idealized one-dimensional peak intensity can be achieved but after the
idealized isotropic peak intensity has already been observed. According
to the indicated restrictions (6) upon the idealized solutions, this
situation would obtain for the case that

(r/R)2 = 1/5. (16)
Under such circumstances (16), our observations near Earth would be rendered

relatively insensitive to the one-dimensional component of a diffusion process.




ITI - A GRAPHICAL REPRESENTATION

From (7) and (9) we note that a plot of log (p,t2/2) versus £t yields
a straight line. The observed intensity has been plotted in this manner for

several solar flare events(l’z)

and an appropriate straight line does indeed
emerge for some events, over an interval that is approximately three times
longer than the time required to achieve the peak intensity. We shall refer
to this temporal domain as the "onset phase.”

Deviations from isotropy are here investigated via a hybrid distribution

function (f) that is a linear superposition of p, and , , viz

f(r,t) = pa(r,t) + € pl(r,t) (17)
Os(r’tm) 01(r’tm)

where ¢ is a parameter that measures the amount of a one-dimensional contamination.

We shall find that a plot of log (f t3/2) versus £ yields an approximately
straight line during the onset phase for a variety of extreme situations. The
cases to be considered are:

a) € =0 D. =

b) € - 1 D =

c) e=1 L. =L, = ).

1 3
i\'
The role of A is exhibited by defining dimensionless variables,<1z’ as fcllows:
T = (vt)/x : ‘ (18)
S =r/x. (19)

With this notation (18, 19), equation (9) may be re-written as

(s,T)  ,2T~-3/2 3[s?- 2T
D B (20



where

=182
=5 (21)

For the case (b) where D, =D, this implies L, =)/3 and (10) is written

» _1/3
py (S,T) 2T -[3s2-21]
a2 "0 = 3= = - 22
o (5,Th) <3SQ> e ((—7 > (22)
where
T/ = 3 52, (23)
m 2

For the case (c) where L1 =, (10) may be written

pl(S T)

o (5,1 )‘( )" e () 24

We note that £(S,T) reaches a maximum, for cases (a) and (c), at T = T, given

by (21), and that (22) is an extraordinary term in that it reaches a maximum at
T, =3T. (25)
For observations at the orbit of Earth, we have that
x» = 0.04 a.u., = S = 25, (26)
In the accompanying figure, we plot log [f T®/2] as a function of T, for
S = 25, over an onset phase defined by the interval
(102 ~ 3T,) > T > (102 = O[L0sT). (27)
Note that (25) and (27) imply
T<T,. (28)

Therefore, the contamination of a one-dimensional diffusion component is liable

to escape detection, under the circumstances of our present observations.




It is instructive to define an effective slope (p) as

o = AlLlog(f T3/2)] (29)
AT 1)
for
AT B (1) - (1)t (30)

where T, = 103 and T, = 102,

That the curves for cases (a), (b), and (c) are quantitatively similar is

summarized by

8./6p/83 = 0.96/1.07/1.00 (31)

It is a pleasure to acknowledge valuable discussions with Phillip

Abraham, Thomas L. Cline, Eugene N. Parker, and Guido Sandri.
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